Aurora Flight Sciences Awarded Office of Naval Research Contract in Support of Multi-Vehicle Cooperation for Air and Sea Vehicles
Aurora Flight Sciences announced today the award of a Phase II contract with the Office of Naval Research (ONR) in the area of multi-vehicle cooperation for air and sea vehicles conducting littoral operations.
The main objective of this project will be to successfully deploy multi-vehicle coordination algorithms onto teams of actual vehicles, using Aurora's On-board Planning Module (OPM). The OPM is a combined hardware/software element that enables coordination among teams of heterogeneous vehicles.
During Phase I of the contract, Aurora broadened the scope of its multi-vehicle coordination research and development thrust to include Unmanned Surface Vehicles (USVs) and Unmanned Underwater Vehicles (UUVs). The goal of the Phase I effort was to demonstrate the feasibility of applying Aurora/MIT Cooperative Search And Track (CSAT) technologies to operations in the littoral environment using teams of heterogeneous vehicles.
Based on earlier successful demonstrations, the goal of the Phase II effort is to perform in-water testing and validation of these technologies on a team comprised of two real USVs and several simulated Unmanned Air Vehicles (UAVs). The testing activities will be conducted using prototype OPMs that will be deployed on the two USVs after additional software development and optimization, and extensive Hardware-In-the-Loop simulation (HILsim).
The contract focuses on the next generation of unmanned systems, which will be capable of communicating with one another, performing missions cooperatively, and sharing information. The ratio of vehicles to operators is expected to go up (perhaps significantly), and the number of different types of vehicles participating in a given mission will grow. "While current UAVs and USVs are very capable at their missions, they are invariably controlled by one or more operators. In the future, we expect that one operator will be in charge of many unmanned vehicles of various types," stated Dr. Jim Paduano, Autonomy, Control and Estimation Lead. Aurora Flight Sciences and MIT have been working together since 2006 on the algorithms that perform task prioritization, task allocation, path planning, and optimization for teams of vehicles performing missions including mine search, force protection, and littoral ISR; now this Phase II will particularly focus on teams of UAVs and USVs performing search, detection, and identification of threats in littoral environments.
More from Uncrewed Vehicles
-
Jammer resistant drone designs spark search for countermeasures
The Russia-Ukraine conflict has driven another stage of evolution for drones and the counter measures to defend against them.
-
L3Harris launches Amorphous software for control of uncrewed platforms
The new Amorphous software is a universal controller that would allow a single operator to control a swarm of “thousands” of uncrewed systems, from drones to underwater platforms.
-
ideaForge unveils new UAVs at Aero India 2025
India UAV supplier ideaForge has launched the Netra 5 and Switch V2 drones at Aero India 2025, boasting of enhanced endurance, AI-driven autonomy and improved operational capabilities.
-
Shaping the future of defence: What 2025 holds for the global drone market
The UAV market is experiencing unprecedented growth, with innovations in technology and battlefield applications driving demand across military sectors. From the battlefields of Ukraine to NATO exercises and beyond, drones are transforming how wars are fought and supported.
-
Maris-Tech confirms customers signing up for Jupiter Drones codec and AI-powered system
Launched at AUSA in October, the company’s multi-stream video codec is attempting to bring a new lease of life to drone technology through its AI accelerator.
-
AUSA 2024: Quantum-Systems targets big 2025 with UAS developments
Quantum-Systems has been upgrading its UAS family, with new versions of the Vector, Reliant and Twister drones set for release throughout 2025.