Lockheed Martin, UK university team for AV protection
Lockheed Martin UK has partnered with research engineers at the University of Surrey to look into new lighter-weight methods of improving the protection and survivability of armoured vehicles. The focus of the research has been ceramic materials and how they can improve protection levels on vehicles such as those used in operational environments by the UK army and special forces.
According to the company, ceramic materials, which have increasingly been replacing steel in armour plating, to protect vehicles and their crews from the effects of attack, are extremely resistant to penetration by hostile weaponry while being less heavy than traditional armour plating.
The main challenge involved with the use of ceramics in this way has been the weakness of the adhesive bonding connecting ceramic plates to their backing, rendering the approach less robust than traditional metallic armour.
However, the latest work by scientists at the University of Surrey is the development of a method of treating the ceramic materials to improve the bond strength of both aluminia and silicon carbide ceramics to the composite backing. This greatly enhances the robustness of the protective armour to better meet operational needs in hostile environments.
Results have shown that using the technique on alumina and silicon carbide surfaces leads to increased bond strength. The tests revealed that when a 14.5mm armour piercing incendiary was fired at the panel it remained intact under a multi-hit environment.
Andrew Harris, Engineering Doctorate research engineer at the University of Surrey, explained: ‘Although ceramic armour has a great number of advantages over other protection methods, there are still some challenges. Our relationship with Lockheed Martin has enabled us to develop a method of treating the ceramic to considerably improve the effectiveness of ceramic armour plating. Key to achieving a step change in performance, proven in tests, has been the pre-conditioning of the ceramic surfaces, prior to bonding onto the support structure.’
Steve Burnage, head of design at LMUK’s Ampthill facility in Bedfordshire, added: ‘The reduction in weight of armoured vehicles is an increasingly important requirement for the army as it looks for the ability to more rapidly deploy an agile force into regions of conflict.’
More from Land Warfare
-
UK commits $2 billion to Ukraine for missiles as Europe speaks up
The contract builds on a previous contract with Thales which was signed in September 2024 for 650 missiles. Deliveries of these began in late 2024 and the new contract ensures continued supply.
-
Sweden orders $131 million worth of trucks for armed forces
The deal with Volvo and Scania includes 300 4×4 truck and 300 6×6 trucks, with both orders including options for a further 200 vehicles.
-
US Marines to receive first GDLS Advanced Reconnaissance Vehicle 30mm in October
The platform is currently being built and will undergo testing by the company before delivery.
-
What do Russia or Ukraine need to win the war?
Shephard looks at both the doctrine and equipment perspective and considers what both countries would require in order to ensure victory.