Mercury Computer Systems continues to expand electronic warfare solutions
Mercury Computer Systems, Inc., a trusted ISR subsystems provider, announced that it is bringing to market an open, standards-based solution for the Active Electronic Warfare (EW) domain. The Mercury offering exploits the multi-plane capabilities and open standard characteristics of OpenVPX, implemented in a 6U form factor to deliver maximum flexibility and performance for both ground mobile and fixed ground platforms. Customization, integration and test services are available to support layering an application onto the 6U modules for faster time to market and deployment of new Active EW capabilities.
"We are pleased to be able to expand our capabilities in the EW space," said Randy Dean, Vice President of Product Line Management at Mercury Computer Systems, Inc. "For example; one new module is specifically configured to deliver low-latency control processing in a multi-plane architecture for Active EW applications. Another module is configured to support XMCs for RF tuning, A/D conversion and D/A conversion, providing those cards with a high bandwidth, subsystem interface. The XMCs are optimized for low power to maximize SWAP constraints," Dean added.
Implementing an Active EW solution requires that several steps are tightly synchronized so that they can operate together in nearly-instantaneous real-time. These steps are to first detect the enemy signal, then identify both its operational bandwidth and physical location, and finally to transmit a signal that will either confuse the enemy or prevent his actions. What this requires from a signal processing subsystem is first, very fast RF tuning, then digital receivers supporting a high level of signal integrity, and lastly the ability to transmit a range of digitally controlled RF signals. Because these Active EW systems must be deployable in a variety of situations, they must be configurable for deployment on different types of platform, under different kinds of environmental conditions, as well as meeting a range of size, weight and power (SWaP) requirements.
The need for these types of solutions is driven by conditions on the modern battlefield, where defeating enemy threats and protecting our warfighters sometimes requires sophisticated capabilities. Active EW systems can be used to counter Improvised Explosive Devices (IEDs) and missiles that rely on radar-based targeting.
Source: Mercury Computer Systems
More from Digital Battlespace
-
AUSA 2024: General Micro Systems adds four new products to the X9 Spider family
The airborne three-domain, the two ground-based and the ¼ ATR OpenVPX-based cross-domain systems were engineered to provide real-time security across multi-domain operations.
-
BAE Systems gets go-ahead for second phase of mission communications programme
DARPA’s Mission-Integrated Network Control (MINC) programme was set up to develop an autonomous tactical network and enable critical data flow in contested environments.
-
Just Released: Space Technology Report
Why space is an essential part of modern military capabilities
-
Work-from-home warfare: the power of mixed reality
Defence-secure mixed reality headsets can save hours, or even weeks, of travel time to fix defunct equipment or get subject experts effectively “on-site” where they are needed.
-
Northrop Grumman receives follow-on contract for CUAS and C-IED systems
The Joint Counter Radio-Controlled Improvised Explosive Device Electronic Warfare (JCREW) counter-improvised explosive device (C-IED) and Drone Restricted Access Using Known Electromagnetic Warfare (DRAKE) counter-UAS (CUAS) systems are mounted and dismounted RF jammers.
-
Adarga’s Vantage AI software selected for UK Strategic Command’s Defence Support
Adarga’s Vantage information analysis tool is in service with the UK MoD and individual UK forces. It builds on the company’s Knowledge Platform which processes, organises and analyses open source material, as well as information held by the user’s military, security and intelligence services.