Boeing Airborne Laser Testbed team destroys boosting ballistic missile
The Boeing Company, industry teammates and the US Missile Defense Agency on Feb. 11 successfully demonstrated the speed, precision and breakthrough potential of directed-energy weapons when the Airborne Laser Testbed (ALTB) engaged and destroyed a boosting ballistic missile.
This experiment marks the first time a laser weapon has engaged and destroyed an in-flight ballistic missile, and the first time that any system has accomplished it in the missile's boost phase of flight. ALTB has the highest-energy laser ever fired from an aircraft, and is the most powerful mobile laser device in the world.
"The Airborne Laser Testbed team has made history with this experiment," said Greg Hyslop, vice president and general manager of Boeing Missile Defense Systems. "Through its hard work and technical ingenuity, the government-industry team has produced a breakthrough with incredible potential. We look forward to conducting additional research and development to explore what this unique directed-energy system can do."
During the experiment, the aircraft, a modified Boeing 747-400F, took off from Edwards Air Force Base and focused its high-energy laser at the missile target during its boost phase as the aircraft flew over the Western Sea Range off the coast of California.
"We've been saying for some time that the Airborne Laser Testbed would be a pathfinder for directed energy and would expand options for policymakers and warfighters," said Michael Rinn, Boeing vice president and ALTB program director. "With this successful experiment, the Airborne Laser Testbed has blazed a path for a new generation of high-energy, ultra-precision weaponry. ALTB technology and future directed-energy platforms will transform how the United States defends itself and its friends and allies. Having the capability to precisely project force, in a measured way, at the speed of light, will save lives."
MDA officially recognized directed energy's warfare-changing potential last March, when it awarded its Technology Pioneer Award to three Boeing Airborne Laser Testbed engineers and three of their government and industry teammates for advancing key ALTB technologies.
Boeing is the prime contractor for the Airborne Laser Testbed, which is designed to provide unprecedented speed-of-light capability to intercept all classes of ballistic missiles in their boost phase of flight.
Northrop Grumman designed and built ALTB's high-energy laser, and Lockheed Martin developed the beam control/fire control system. Boeing provided the aircraft, the battle management system and overall systems integration and testing.
Source: Boeing
More from Digital Battlespace
-
Airbus launches final CSO observation satellite for French Armed Forces
Airbus was awarded the Composante Spatiale Optique (CSO) contract at the end of 2010. This included an option for a third satellite, which was activated after Germany joined the programme in 2015.
-
Intelligence advantage: How real-time GEOINT is reshaping military decision-making (Studio)
In today’s contested operational environment, adaptability is key. The new Geospatial-Intelligence as a Service (GEO IaaS) solution from Fujitsu and MAIAR empowers militaries by enabling intelligence advantage, combining advanced technology with human expertise to deliver actionable insights.
-
Israel sets up new department to boost development of AI and autonomy
Israel will continue to develop autonomy for its weapons and platforms as it brings together defence personnel, academia and industry.
-
Clavister contracted to supply cyber protection for CV90s
Clavister CyberArmour, an integrated defence cybersecurity system, will be used on BAE Systems Hägglunds’ CV90 platform in deployments with a Scandinavian country, as well as in an eastern European nation.
-
Lockheed Martin completes tactical satellite demonstration and prepares for launch
The tactical satellite (TacSat) is an intelligence, surveillance and reconnaissance (ISR) system and will participate in exercises in 2025.
-
AUSA 2024: General Micro Systems adds four new products to the X9 Spider family
The airborne three-domain, the two ground-based and the ¼ ATR OpenVPX-based cross-domain systems were engineered to provide real-time security across multi-domain operations.