DARPA, on 7 January, announced the Materials for Transduction (MATRIX) programme to develop usable new transductional materials.
Transduction involving the conversion of energy from one form into another is common in many military and space devices, such as communications antennas, thermoelectric generators and electric motors.
Research efforts to develop new transductional materials, however, have largely been limited to laboratory demonstrations and haven’t always resulted in new capabilities or significant size, weight, and power (SWAP) reduction for military devices and systems.
MATRIX will take a systems approach that integrates state-of-the-art materials science, predictive modelling methods, and domain-specific expertise to rapidly validate and optimise new functional architectures that offer transformative defence-related capabilities.
Potential applications include thermoelectrics - energy transfer, thermal management, and refrigeration; multiferroics – enhanced sensors, actuation, micro-power generation, tunable RF and microwave field engineering; and Phase-Change Materials – fast switching and sensor applications.
Jim Gimlett, program manager, DARPA, said: 'Advances in materials have been key to achieving a wide range of critical, defence-related capabilities, but the development of novel, energy-transducing materials has been challenging, particularly in translating materials advances to the device and systems level.'
He added: 'We aim to develop new classes of transductional materials that can be demonstrated directly in applications, and to advance innovative modelling and simulation tools that engineers can use to design systems that take advantage of these new materials. The goal is not just to design materials for use in devices; we envision developing materials that, because of their energy-transforming properties, are effectively devices themselves.'